3.33 \(\int \frac {x (a+b \log (c x^n))}{d+e x} \, dx\)

Optimal. Leaf size=69 \[ -\frac {d \log \left (\frac {e x}{d}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{e^2}+\frac {a x}{e}+\frac {b x \log \left (c x^n\right )}{e}-\frac {b d n \text {Li}_2\left (-\frac {e x}{d}\right )}{e^2}-\frac {b n x}{e} \]

[Out]

a*x/e-b*n*x/e+b*x*ln(c*x^n)/e-d*(a+b*ln(c*x^n))*ln(1+e*x/d)/e^2-b*d*n*polylog(2,-e*x/d)/e^2

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {43, 2351, 2295, 2317, 2391} \[ -\frac {b d n \text {PolyLog}\left (2,-\frac {e x}{d}\right )}{e^2}-\frac {d \log \left (\frac {e x}{d}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{e^2}+\frac {a x}{e}+\frac {b x \log \left (c x^n\right )}{e}-\frac {b n x}{e} \]

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*Log[c*x^n]))/(d + e*x),x]

[Out]

(a*x)/e - (b*n*x)/e + (b*x*Log[c*x^n])/e - (d*(a + b*Log[c*x^n])*Log[1 + (e*x)/d])/e^2 - (b*d*n*PolyLog[2, -((
e*x)/d)])/e^2

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2317

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(Log[1 + (e*x)/d]*(a +
b*Log[c*x^n])^p)/e, x] - Dist[(b*n*p)/e, Int[(Log[1 + (e*x)/d]*(a + b*Log[c*x^n])^(p - 1))/x, x], x] /; FreeQ[
{a, b, c, d, e, n}, x] && IGtQ[p, 0]

Rule 2351

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Wit
h[{u = ExpandIntegrand[a + b*Log[c*x^n], (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c,
d, e, f, m, n, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IntegerQ[m] && IntegerQ[r]))

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin {align*} \int \frac {x \left (a+b \log \left (c x^n\right )\right )}{d+e x} \, dx &=\int \left (\frac {a+b \log \left (c x^n\right )}{e}-\frac {d \left (a+b \log \left (c x^n\right )\right )}{e (d+e x)}\right ) \, dx\\ &=\frac {\int \left (a+b \log \left (c x^n\right )\right ) \, dx}{e}-\frac {d \int \frac {a+b \log \left (c x^n\right )}{d+e x} \, dx}{e}\\ &=\frac {a x}{e}-\frac {d \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {e x}{d}\right )}{e^2}+\frac {b \int \log \left (c x^n\right ) \, dx}{e}+\frac {(b d n) \int \frac {\log \left (1+\frac {e x}{d}\right )}{x} \, dx}{e^2}\\ &=\frac {a x}{e}-\frac {b n x}{e}+\frac {b x \log \left (c x^n\right )}{e}-\frac {d \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {e x}{d}\right )}{e^2}-\frac {b d n \text {Li}_2\left (-\frac {e x}{d}\right )}{e^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 66, normalized size = 0.96 \[ \frac {-a d \log \left (\frac {e x}{d}+1\right )+a e x+b \log \left (c x^n\right ) \left (e x-d \log \left (\frac {e x}{d}+1\right )\right )-b d n \text {Li}_2\left (-\frac {e x}{d}\right )-b e n x}{e^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*Log[c*x^n]))/(d + e*x),x]

[Out]

(a*e*x - b*e*n*x - a*d*Log[1 + (e*x)/d] + b*Log[c*x^n]*(e*x - d*Log[1 + (e*x)/d]) - b*d*n*PolyLog[2, -((e*x)/d
)])/e^2

________________________________________________________________________________________

fricas [F]  time = 0.49, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b x \log \left (c x^{n}\right ) + a x}{e x + d}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*log(c*x^n))/(e*x+d),x, algorithm="fricas")

[Out]

integral((b*x*log(c*x^n) + a*x)/(e*x + d), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \log \left (c x^{n}\right ) + a\right )} x}{e x + d}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*log(c*x^n))/(e*x+d),x, algorithm="giac")

[Out]

integrate((b*log(c*x^n) + a)*x/(e*x + d), x)

________________________________________________________________________________________

maple [C]  time = 0.23, size = 343, normalized size = 4.97 \[ \frac {i \pi b d \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i x^{n}\right ) \mathrm {csgn}\left (i c \,x^{n}\right ) \ln \left (e x +d \right )}{2 e^{2}}-\frac {i \pi b d \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \,x^{n}\right )^{2} \ln \left (e x +d \right )}{2 e^{2}}-\frac {i \pi b d \,\mathrm {csgn}\left (i x^{n}\right ) \mathrm {csgn}\left (i c \,x^{n}\right )^{2} \ln \left (e x +d \right )}{2 e^{2}}+\frac {i \pi b d \mathrm {csgn}\left (i c \,x^{n}\right )^{3} \ln \left (e x +d \right )}{2 e^{2}}-\frac {i \pi b x \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i x^{n}\right ) \mathrm {csgn}\left (i c \,x^{n}\right )}{2 e}+\frac {i \pi b x \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \,x^{n}\right )^{2}}{2 e}+\frac {i \pi b x \,\mathrm {csgn}\left (i x^{n}\right ) \mathrm {csgn}\left (i c \,x^{n}\right )^{2}}{2 e}-\frac {i \pi b x \mathrm {csgn}\left (i c \,x^{n}\right )^{3}}{2 e}+\frac {b d n \ln \left (-\frac {e x}{d}\right ) \ln \left (e x +d \right )}{e^{2}}+\frac {b d n \dilog \left (-\frac {e x}{d}\right )}{e^{2}}-\frac {b d \ln \relax (c ) \ln \left (e x +d \right )}{e^{2}}-\frac {b d \ln \left (x^{n}\right ) \ln \left (e x +d \right )}{e^{2}}-\frac {b n x}{e}+\frac {b x \ln \relax (c )}{e}+\frac {b x \ln \left (x^{n}\right )}{e}-\frac {a d \ln \left (e x +d \right )}{e^{2}}+\frac {a x}{e}-\frac {b d n}{e^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(b*ln(c*x^n)+a)/(e*x+d),x)

[Out]

b*ln(x^n)/e*x-b*ln(x^n)*d/e^2*ln(e*x+d)-b*n*x/e-b*n*d/e^2+b*n*d/e^2*ln(e*x+d)*ln(-1/d*e*x)+b*n*d/e^2*dilog(-1/
d*e*x)-1/2*I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2*d/e^2*ln(e*x+d)-1/2*I*b*Pi*csgn(I*c*x^n)^3/e*x+1/2*I*b*Pi*csgn(I
*x^n)*csgn(I*c*x^n)*csgn(I*c)*d/e^2*ln(e*x+d)-1/2*I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)*csgn(I*c)/e*x+1/2*I*b*Pi*cs
gn(I*x^n)*csgn(I*c*x^n)^2/e*x+1/2*I*b*Pi*csgn(I*c*x^n)^2*csgn(I*c)/e*x+1/2*I*b*Pi*csgn(I*c*x^n)^3*d/e^2*ln(e*x
+d)-1/2*I*b*Pi*csgn(I*c*x^n)^2*csgn(I*c)*d/e^2*ln(e*x+d)+b*ln(c)/e*x-b*ln(c)*d/e^2*ln(e*x+d)+a*x/e-a*d/e^2*ln(
e*x+d)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ a {\left (\frac {x}{e} - \frac {d \log \left (e x + d\right )}{e^{2}}\right )} + b \int \frac {x \log \relax (c) + x \log \left (x^{n}\right )}{e x + d}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*log(c*x^n))/(e*x+d),x, algorithm="maxima")

[Out]

a*(x/e - d*log(e*x + d)/e^2) + b*integrate((x*log(c) + x*log(x^n))/(e*x + d), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x\,\left (a+b\,\ln \left (c\,x^n\right )\right )}{d+e\,x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*log(c*x^n)))/(d + e*x),x)

[Out]

int((x*(a + b*log(c*x^n)))/(d + e*x), x)

________________________________________________________________________________________

sympy [A]  time = 13.68, size = 144, normalized size = 2.09 \[ - \frac {a d \left (\begin {cases} \frac {x}{d} & \text {for}\: e = 0 \\\frac {\log {\left (d + e x \right )}}{e} & \text {otherwise} \end {cases}\right )}{e} + \frac {a x}{e} + \frac {b d n \left (\begin {cases} \frac {x}{d} & \text {for}\: e = 0 \\\frac {\begin {cases} \log {\relax (d )} \log {\relax (x )} - \operatorname {Li}_{2}\left (\frac {e x e^{i \pi }}{d}\right ) & \text {for}\: \left |{x}\right | < 1 \\- \log {\relax (d )} \log {\left (\frac {1}{x} \right )} - \operatorname {Li}_{2}\left (\frac {e x e^{i \pi }}{d}\right ) & \text {for}\: \frac {1}{\left |{x}\right |} < 1 \\- {G_{2, 2}^{2, 0}\left (\begin {matrix} & 1, 1 \\0, 0 & \end {matrix} \middle | {x} \right )} \log {\relax (d )} + {G_{2, 2}^{0, 2}\left (\begin {matrix} 1, 1 & \\ & 0, 0 \end {matrix} \middle | {x} \right )} \log {\relax (d )} - \operatorname {Li}_{2}\left (\frac {e x e^{i \pi }}{d}\right ) & \text {otherwise} \end {cases}}{e} & \text {otherwise} \end {cases}\right )}{e} - \frac {b d \left (\begin {cases} \frac {x}{d} & \text {for}\: e = 0 \\\frac {\log {\left (d + e x \right )}}{e} & \text {otherwise} \end {cases}\right ) \log {\left (c x^{n} \right )}}{e} - \frac {b n x}{e} + \frac {b x \log {\left (c x^{n} \right )}}{e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*ln(c*x**n))/(e*x+d),x)

[Out]

-a*d*Piecewise((x/d, Eq(e, 0)), (log(d + e*x)/e, True))/e + a*x/e + b*d*n*Piecewise((x/d, Eq(e, 0)), (Piecewis
e((log(d)*log(x) - polylog(2, e*x*exp_polar(I*pi)/d), Abs(x) < 1), (-log(d)*log(1/x) - polylog(2, e*x*exp_pola
r(I*pi)/d), 1/Abs(x) < 1), (-meijerg(((), (1, 1)), ((0, 0), ()), x)*log(d) + meijerg(((1, 1), ()), ((), (0, 0)
), x)*log(d) - polylog(2, e*x*exp_polar(I*pi)/d), True))/e, True))/e - b*d*Piecewise((x/d, Eq(e, 0)), (log(d +
 e*x)/e, True))*log(c*x**n)/e - b*n*x/e + b*x*log(c*x**n)/e

________________________________________________________________________________________